2020 CURRICULUM AND ASSESSMENT PLAN

Year 3

<table>
<thead>
<tr>
<th>SEMESTER ONE</th>
<th>SEMESTER TWO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaginative focus: Narrative</td>
<td>Imaginative focus: Narrative</td>
</tr>
<tr>
<td>Investigating characters (U2)</td>
<td>Examining imaginative texts (U5)</td>
</tr>
<tr>
<td>- Listen to, view and read a novel to explore the authors’ use of descriptive language in the construction of characters.</td>
<td>- Listen to, read, view and interpret imaginative texts from different cultures.</td>
</tr>
<tr>
<td>- Read an extract from the novel and answer questions using comprehension strategies to build literal and inferred meaning of the text.</td>
<td>- Explore text structure, language choices and visual features used to describe the setting and events.</td>
</tr>
<tr>
<td>- Write a short imaginative narrative based on a familiar theme.</td>
<td>- Create a multimodal imaginative text.</td>
</tr>
<tr>
<td>6 weeks</td>
<td>6 weeks</td>
</tr>
</tbody>
</table>

Persuasive focus: Argument	**Informative focus**
Reading, writing and performing poetry (U6)	**Examining stories from different perspectives (U4)**
- Read, view and analyse persuasive texts.	- Listen to, view, read and compare different versions of the same story.
- Explore how persuasive language is used to express feelings and opinions on topics.	- Create a spoken retelling of a story from a different perspective.
- Identify persuasive text structures and language features that create texts.	- Make inferences about characters and settings and draw connections between the text and their own experiences.
6 weeks	5 weeks

Imaginative focus: Description	**Summative assessment**
Examining imaginative texts (U5)	**Assessment task 1** – Students create a multimodal imaginative text about overcoming a fear, using software.
- Listen to, read, view and adapt Australian poems.	- Assessment task 2 – Students comprehend a story, drawing on knowledge of context, text structure and language features, and evaluate language and images in a text.
- Discuss how language is used to describe settings in texts and explore how settings shape the events and influence the mood.	- Students prepare and present a spoken retelling of a familiar narrative from the perspective of another character in the text.
- Write and present an adaptation of a poem.	- To create and present a spoken procedure explaining how to do something.
6 weeks	6 weeks

Texts	**Texts**	**Texts**
Matty forever	Kumiko and the dragon	The Lorax
The true story of the 3 little pigs	The ABC book of Australian poetry	Traditional stories
The local persuader		Procedural texts

SKILL DEVELOPMENT	**SKILL DEVELOPMENT**	**SKILL DEVELOPMENT**
Spelling – weekly lists	Spelling – weekly lists	Spelling – weekly lists
Spelling – context of a text	Spelling – context of a text	Spelling – context of a text
6 weeks	5 weeks	6 weeks

ASSESSMENT

Summative assessment	**Summative assessment**	**Summative assessment**
Assessing task 1 – Students write an imaginative narrative on a familiar theme of ‘friendship’ that develops characters.	Assessing task 1 – Students write and present an adaptation of a poem.	Assessing task 1 – Students create a multimodal imaginative text about overcoming a fear, using software.
Assessing task 2 – Students comprehend a story, drawing on knowledge of context, text structure and language features, and evaluate language and images in a text.		Assessing task 2 – Students prepare and present a spoken retelling of a familiar narrative from the perspective of another character in the text.

| Text – Matty Forever | Text – Kumiko and the Dragon | Text – The Lorax |
Semester One

Unit 1

Students develop understandings of:

- Number and place value — count to 1 000, identify odd and even numbers, represent 3-digit numbers, compare and order 3-digit numbers, partition numbers (standard and non-standard place value partitioning), recall addition facts and related subtraction facts, represent and solve addition problems, add 2-digit, single-digit and 3-digit numbers, subtract 2-digit and 3-digit numbers, represent multiplication, solve simple problems involving multiplication, recall multiplication number facts.
- Using units of measurement — tell time to 5-minute intervals, identify one metre as a standard metric unit, represent a metre, measure with metres.
- Chance — conduct chance experiments, describe the outcomes of chance experiments, identify variations in the results of chance experiments.
- Data representation and interpretation — collect simple data, record data in lists and tables, display data in a column graph, interpret and describe outcomes of data investigations.

SKILL DEVELOPMENT

- Count to 1000
- Count in 2s, 3s, 5s, 10s
- Order 3 digit numbers
- Number facts: addition and subtraction 2 digit numbers
- Months of the Year
- Time: 5min intervals
- 4 digit numbers
- Arrays
- Repeated addition
- Part-part whole model (multiplication)
- Division facts
- Fractions: symbolic representation
- Fractions of collections
- Chance language
- Data: types of graphs

Curriculum Knowledge

- Count beyond 1000
- Multiplication Facts
- Related Division facts
- Addition Facts
- Subtraction facts
- Column graphs
- Money: count coins and notes
- Calculating change
- Patterns
- Addition facts
- Subtractions facts
- Grid coordinates
- Directional language
- Angles - right angle, greater than/less than right angle
- Partition 3 digit numbers
- Odd/even numbers
- Multiplication facts
- Patterns
- Fractions: 1/2, 1/4, 1/8, 1/16, 1/32
- Multiplication facts: x0, x1, x2, x5, x10
- Related division facts
- Fractions: 1/3, 1/5, 1/8, 1/16, 1/32
- Symmetry
- Telling time to nearest minute
- Measuring length using standard metric units (metres and centimetres)
- Measuring mass using standard metric units (kilograms)
- Measuring mass using standard metric units (grams)
- Measuring capacity using standard metric units (litres)
- Measuring capacity using standard metric units (millilitres)

Semester Two

Unit 2

Students develop understandings of:

- Number and place value — compare and order three-digit numbers, partition three-digit numbers into place value parts, investigate 1 000, count to and beyond 1 000, use place value to add and subtract numbers, recall addition number facts, add and subtract three-digit numbers, add and subtract numbers eight and nine, solve addition and subtraction word problems, double and halve multiples of ten.
- Fractions and decimals — describe fractions as equal portions or shares, represent halves, quarters and eighths of shapes and collections, represent thirds of shapes and collections.
- Money and financial mathematics — count collections of coins and notes, make and match equivalent combinations, calculate change from simple transactions, solve a range of simple problems involving money.
- Patterns and algebra — infer pattern rules from familiar number patterns, identify and continue additive number patterns, identify missing elements in number patterns.
- Location and transformation — represent positions on a simple grid map, show full, half and quarter turns on a grid map, describe positions in relation to key features, represent movement and pathways on a simple grid map.
- Geometric reasoning — identify angles in the environment, construct angles with materials, compare the size of familiar angles in everyday situations.

SKILL DEVELOPMENT

- Count in 2s, 3s, 5s, 10s
- Arrays
- Repeated addition
- Part-part whole model (multiplication)
- Division facts
- Fractions: ½, 1/3, 1/5, 1/8, ¼, 1/8
- Related division facts
- Multiplication facts
- Patterns
- Fractions: 1/2, 1/4, 1/8, 1/16, 1/32
- Multiplication facts: x0, x1, x2, x5, x10
- Related division facts
- Fractions: 1/3, 1/5, 1/8, 1/16, 1/32
- Symmetry
- Telling time to nearest minute
- Measuring length using standard metric units (metres and centimetres)
- Measuring mass using standard metric units (kilograms)
- Measuring mass using standard metric units (grams)
- Measuring capacity using standard metric units (litres)
- Measuring capacity using standard metric units (millilitres)

Curriculum Knowledge

- Count to 10 000
- Connect number representations with number patterns, use number properties to continue number patterns, identify pattern rules to find missing elements in patterns.
- Units of measurement — use familiar metric units to order and compare objects, explain measurement choices, represent time to the minute on digital and analogue clocks, transfer knowledge of time to real-life contexts.
- Location and transformation — describe and identify examples of symmetry in the environment, classify shapes as symmetrical and non-symmetrical.

Unit 3

Students develop understandings of:

- Number and place value — count and sequences beyond 1 000, represent, combine and partition three-digit and four-digit numbers flexibly, use place value to add (written strategy), represent multiplication as arrays and repeated addition, identify part-part-whole relationships in multiplication and division situations, add and subtract two-digit numbers and three-digit numbers.
- Fractions and decimals — identify related division number facts, make models and use number sentences that represent problem situations, recall addition and subtraction facts, identify and describe the relationship between addition and subtraction, choose appropriate mental strategies to add and subtract.
- Fractions and decimals — identify and compare unit fractions, represent and compare unit fractions of shapes and collections, represent familiar unit fractions symbolically, solve simple problems involving, halves, thirds, quarters and eighths.
- Money and financial mathematics — count the change required for simple transactions to the nearest five cents.
- Using units of measurement — measure, order and compare objects using familiar metric units of length, mass and capacity.
- Shape — make models of three-dimensional objects.
- Location and transformation — represent symmetry, interpret simple maps and plans.
- Geometric reasoning — identify angles as measures of turn, compare angle sizes in everyday situations.
- Data representation and interpretation — identify questions of interest based on one categorical variable, gather data relevant to a question, organise and represent data, interpret data displays.

SKILL DEVELOPMENT

- Count to 10 000
- Connect number representations with number patterns, use number properties to continue number patterns, identify pattern rules to find missing elements in patterns.
- Units of measurement — use familiar metric units to order and compare objects, explain measurement choices, represent time to the minute on digital and analogue clocks, transfer knowledge of time to real-life contexts.
- Location and transformation — describe and identify examples of symmetry in the environment, classify shapes as symmetrical and non-symmetrical.
- Count to 10 000
- Connect number representations with number patterns, use number properties to continue number patterns, identify pattern rules to find missing elements in patterns.
- Units of measurement — use familiar metric units to order and compare objects, explain measurement choices, represent time to the minute on digital and analogue clocks, transfer knowledge of time to real-life contexts.
- Location and transformation — describe and identify examples of symmetry in the environment, classify shapes as symmetrical and non-symmetrical.

Curriculum Knowledge

- Count to 10 000
- Connect number representations with number patterns, use number properties to continue number patterns, identify pattern rules to find missing elements in patterns.
- Units of measurement — use familiar metric units to order and compare objects, explain measurement choices, represent time to the minute on digital and analogue clocks, transfer knowledge of time to real-life contexts.
- Location and transformation — describe and identify examples of symmetry in the environment, classify shapes as symmetrical and non-symmetrical.

Unit 4

Students develop understandings of:

- Number and place value — recall addition and related subtraction number facts, use ‘part-part-whole’ thinking to interpret and solve addition and subtraction word problems, add and subtract using a written place value strategy, recall multiplication and related division facts, multiply two-digit numbers by single-digit multipliers, interpret and solve multiplication and division word problems.
- Fractions and decimals — identify, represent and compare familiar unit fractions and their multiples (shapes, objects and collections), record fractions symbolically, recognise key equivalent fractions, solve simple problems involving fractions.
- Money and financial mathematics — count the change required for simple transactions to the nearest five cents.
- Using units of measurement — measure, order and compare objects using familiar metric units of length, mass and capacity.
- Shape — make models of three-dimensional objects.
- Location and transformation — represent symmetry, interpret simple maps and plans.
- Geometric reasoning — identify angles as measures of turn, compare angle sizes in everyday situations.
- Data representation and interpretation — identify questions of interest based on one categorical variable, gather data relevant to a question, organise and represent data, interpret data displays.

SKILL DEVELOPMENT

- Count to 10 000
- Connect number representations with number patterns, use number properties to continue number patterns, identify pattern rules to find missing elements in patterns.
- Units of measurement — use familiar metric units to order and compare objects, explain measurement choices, represent time to the minute on digital and analogue clocks, transfer knowledge of time to real-life contexts.
- Location and transformation — describe and identify examples of symmetry in the environment, classify shapes as symmetrical and non-symmetrical.
- Count to 10 000
- Connect number representations with number patterns, use number properties to continue number patterns, identify pattern rules to find missing elements in patterns.
- Units of measurement — use familiar metric units to order and compare objects, explain measurement choices, represent time to the minute on digital and analogue clocks, transfer knowledge of time to real-life contexts.
- Location and transformation — describe and identify examples of symmetry in the environment, classify shapes as symmetrical and non-symmetrical.
<table>
<thead>
<tr>
<th>SEMESTER ONE</th>
<th>SEMESTER TWO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGITAL TECHNOLOGIES</td>
<td>DESIGN AND TECHNOLOGIES</td>
</tr>
<tr>
<td>Unit 1: What digital systems do you use?</td>
<td>Unit 3: Pinball paradise</td>
</tr>
<tr>
<td>In this unit students will explore and use a range of digital systems including peripheral devices and create a digital solution (an interactive guessing game) using a visual programming language. They will:</td>
<td>Engineering principles and systems</td>
</tr>
<tr>
<td>• identify and explore a range of digital systems and their use to meet needs at home, in school and in the local community, and use a range of peripheral devices to transmit data</td>
<td>In this unit, students investigate how forces and the properties of materials affect the behaviour of a product or system. They make a pinball machine and design a games environment for its use. They explore the role of people in engineering technology occupations and how they address factors that meet client needs.</td>
</tr>
<tr>
<td>• define simple problems and identify needs</td>
<td>Students apply processes and production skills, including:</td>
</tr>
<tr>
<td>• develop technical skills in using a visual programming language to create a digital solution</td>
<td>• investigating by:</td>
</tr>
<tr>
<td>• describe, follow and apply a sequence of steps and decisions (algorithms) in non-digital contexts and when using a visual programming language</td>
<td>o exploring games with moving parts</td>
</tr>
<tr>
<td>• implement a simple digital solution that involves branching algorithms and user input when creating a simple guessing game</td>
<td>o testing materials, tools and techniques</td>
</tr>
<tr>
<td>• explain how their solutions and existing information systems, such as learning software, meet personal, school and community needs</td>
<td>o exploring techniques for shaping and joining materials and creating mechanisms</td>
</tr>
<tr>
<td>• develop skills in computational and systems thinking when solving simple problems and creating solutions.</td>
<td>• generating, developing and communicating design ideas for:</td>
</tr>
<tr>
<td>Suggested partner units:</td>
<td>o a pinball machine</td>
</tr>
<tr>
<td>• Any unit in Years 3-4 For example: Science Year 3 Unit 1 – Is it living?</td>
<td>o a games room environment</td>
</tr>
<tr>
<td>Curriculum Knowledge</td>
<td>Summative assessment</td>
</tr>
<tr>
<td>Assessment</td>
<td>Using unit fractions and multiplication – Students recall multiplication facts for single-digit numbers, solve problems using efficient strategies for multiplication, and model and represent unit fractions.</td>
</tr>
<tr>
<td>Assessment task 1: Identify and describe digital systems and solutions</td>
<td>Summative assessment</td>
</tr>
<tr>
<td>Assessment task 2: Guessing game</td>
<td>Measuring length, mass and capacity using metric units – Students use metric units to measure and compare length, mass and capacity.</td>
</tr>
<tr>
<td>Students demonstrate knowledge and understanding of digital systems and apply skills in defining, designing, implementing and evaluating a digital solution (simple guessing game) using a visual programming language.</td>
<td>Money (eAssessment) – Students represent money values in various ways and correctly count change from financial transactions.</td>
</tr>
<tr>
<td>Assessment</td>
<td>Representing multiplication – Students represent multiplication problems using a range of strategies.</td>
</tr>
<tr>
<td>Assessment</td>
<td>Patterning and connection addition and subtraction – Students classify numbers as either odd or even, continue number patterns, recall addition facts for single-digit numbers and recognise the connection between addition and subtraction. Telling time to the nearest minute – Students tell time to the nearest minute and solve problems involving time.</td>
</tr>
<tr>
<td>SEMESTER ONE</td>
<td>SEMESTER TWO</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Unit 1: Is it living?</td>
<td>Unit 4: What's the matter?</td>
</tr>
<tr>
<td>Students learn about grouping living things based on observable features and that living things can be distinguished from non-living things. They justify sorting living things into common animal and plant groups based on observable features. They also explore grouping familiar things into living, non-living, once living things and products of living things. Students understand that science knowledge helps people to understand the effect of actions. They use their experiences to identify questions that can be investigated scientifically and make predictions about scientific investigations. Students identify and use safe practices to make scientific observations and record data about living and non-living things. Students use scientific language and representations to communicate their observations, ideas and findings.</td>
<td>Students understand how a change of state between solid and liquid can be caused by adding or removing heat. They explore the properties of liquids and solids and understand how to identify an object as a solid or a liquid. Students identify how science is involved in making decisions and how it helps people to understand the effect of their actions. They evaluate how adding or removing heat affects materials used in everyday life. They conduct investigations, including identifying investigation questions and making predictions, assessing safety, recording and analysing results, considering fairness and communicating ideas and findings. Students describe how science investigations can be used to answer questions. They recognise that Australia's First Peoples traditionally used knowledge of solids and liquids in their everyday lives.</td>
</tr>
</tbody>
</table>

| **Unit 2: Spinning Earth** | **Unit 3: Hot stuff** |
| Students use their understanding of the movement of Earth to suggest explanations for everyday observations such as day and night, sunrise and sunset and shadows. They identify the observable and non-observable features of Earth and compare its size with the sun and moon. They make observations of the changes in sunlight throughout the day and investigate how Earth's movement causes these changes. Students plan and conduct an investigation about shadows and collect data safely using appropriate equipment to record formal measurements. Students represent their data in tables and simple column graphs to identify patterns and explain their results. They identify how Aboriginal peoples use knowledge of Earth's movement in their traditional lives. Students explore the relationship between the sun and Earth to identify where people use science knowledge in their lives. They create a presentation to communicate their understandings and findings about the regular changes on Earth and its rotation. | Students investigate how heat energy is produced and the behaviour of heat when it transfers from one object or area to another. They explore how heat can be observed by touch and that formal measurements of the amount of heat (temperature) can be taken using a thermometer. Students identify that heat energy transfers from warmer areas to cooler areas. They use their experiences to identify questions about heat energy and make predictions about investigations. Students describe how they can use science investigations to respond to questions. Students plan and conduct investigations about heat and heat energy transfer and collect and record observations, using appropriate equipment to record measurements. They represent their data in tables and simple column graphs, to identify patterns, explain their results and describe how safety and fairness were considered in their investigations. |

| **Unit 1: Is it living?** | **Unit 4: What's the matter?** |
| Investigating living things – Students group living things based on observable features and distinguish them from non-living things. | Investigating solids and liquids – Students conduct an investigation about liquids and solids changing state when heat is added or taken away. To make a prediction, record observations and suggest reasons for findings. To describe how safety and fairness were considered. |

<table>
<thead>
<tr>
<th>SEMESTER ONE</th>
<th>SEMESTER TWO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1: Our unique communities</td>
<td>Unit 2: Exploring places near and far</td>
</tr>
</tbody>
</table>
| Inquiry questions:
- How do people contribute to their unique communities?
In this unit, students:
- identify individuals, events and aspects of the past that have significance in the present
- identify and describe aspects of their community that have changed and remained the same over time
- explain how and why people participate in and contribute to their communities
- identify a point of view about the importance of different celebrations and commemorations to different groups
- pose questions and locate and collect information from sources, including observations to answer questions and draw simple conclusions
- sequence information about events and the lives of individuals in chronological order communicate their ideas, findings and conclusions in visual and written forms using simple discipline-specific terms. | Inquiry questions:
- How and why are places similar and different?
In this unit, students:
- identify connections between people and the characteristics of places
- describe the diverse characteristics of different places at the local scale and explain the similarities and differences between the characteristics of these places
- interpret data to identify and describe simple distributions and draw simple conclusions
- record and represent data in different formats, including labelled maps using basic cartographic conventions.
- explain the role of rules in their community and share their views on an issue related to rule-making
- describe the importance of making decisions democratically and propose individual action in response to a democratic issue
- communicate their ideas, findings and conclusions in oral, visual and written forms using simple discipline-specific terms. |

<p>| Unit 2: Our unique communities | Unit 2: Exploring places near and far |
| Students conduct an inquiry to answer the following inquiry question: How and why are Anzac Day commemorations significant for different groups? | Students identify, describe and interpret data about Australian places and explain the importance of making decisions democratically, the role of rules in the community and action in response to an issue. |</p>
<table>
<thead>
<tr>
<th>THE ARTS</th>
<th>CURRICULUM KNOWLEDGE</th>
<th>ASSESSMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMESTER ONE</td>
<td>Visual Arts</td>
<td>SEMESTER TWO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit 2: Tiny worlds</td>
<td>In this unit, students explore the communication of diversity in environments through the manipulation of visual language. Students will:</td>
<td>Unit 1: Persuade to protect</td>
</tr>
<tr>
<td></td>
<td>• explore and identify purpose and meaning of cultural symbolism in artworks by Aboriginal and Torres Strait Islander peoples and Asian artists to communicate relationships to environments and places</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• experiment with visual conventions and visual language to depict personal responses and qualities of environments (printmaking techniques, colour relationships – warm/cool; application of materials - harsh/gentle; spatial devices – flattened space/aerial perspective/depth)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• collaborate, plan and create a collection/exhibition of artworks to depict diversity in Australian environments and diversity in individual approach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• compare contemporary artworks of Aboriginal and Torres Strait Islander peoples and Australian artists that communicate personal experience with environments and natural landforms and use art terminology to communicate meaning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summative assessment</td>
<td>Summative assessment</td>
</tr>
<tr>
<td></td>
<td>Students explore human connections to real and imagined places as inspiration for constructing mixed-media artworks.</td>
<td>Students explore media artworks that inform the making of a collaborative television-style advertisement, which persuades a targeted audience to protect an imaginary place.</td>
</tr>
</tbody>
</table>
SEMESTER ONE

Unit 1: Good friends

Students investigate how emotional responses vary and understand how being a good friend helps them to interact positively with others in a variety of situations. They recognise strategies for managing change and identify how meeting challenges strengthens identity.

- Students:
 - explore a range of emotions and factors that influence and strengthen self-identity
 - understand the basis of friendships
 - examine the benefits of positive social interaction.
- Summative assessment

Unit 2: Feeling Safe

Students explore risk taking behaviours, their rights and responsibilities and decision making strategies. They explore bullying and strategies to reduce it and identify people who can help them make good decisions and stay safe.

- Students:
 - determine the difference between feeling safe and unsafe
 - establish personal safety guidelines in relation to private parts of the body
 - develop the concept of children’s rights
 - examine how rules and laws contribute to safety
 - develop an awareness of the environment by recognising safety clues
 - understand how emotional responses vary in depth and strength in different situations
 - investigate strategies to reduce bullying and promote positive interaction
 - investigate the effects of risk-taking behaviour
 - develop strategies to reduce and manage situations involving risk.

This unit incorporates concepts from the Daniel Morcombe Child Safety Curriculum.

Unit 3: Healthy futures

Students explore the concept of sustainable practice and the ways that they can contribute to the sustainability of the environment in their home, classroom, and school.

- Students:
 - explore sustainability practices that demonstrate respect for the environment
 - make connections between sustainability and personal health
 - investigate sustainable practices in the classroom
 - explore the similarities between community, classroom and school sustainable practices
 - discuss how being outdoors supports the different dimensions of health
 - participate in a range of outdoor activities with other students.

Unit 4: I am healthy and active

Students investigate the concepts of physical activity and sedentary behaviours while exploring the recommendations of physical activity for 5 to 12 year olds. They examine the benefits of physical activity and investigate ways to increase physical activity in their lives.

- Students:
 - examine different types of physical activity and the benefits to health and wellbeing
 - explore strategies to stay healthy and active
 - examine the concept of sedentary behaviour and how to reduce inactivity
 - investigate strategies to increase physical activity levels and improve health and wellbeing
 - examine how personal identities can be strengthened in challenging situations
 - participate in games and physical activities to experience health and wellbeing benefits.

SEMESTER TWO

Unit 1: Good friends

Students investigate how emotional responses vary and understand how being a good friend helps them to interact positively with others in a variety of situations. They recognise strategies for managing change and identify how meeting challenges strengthens identity.

- Students:
 - explore a range of emotions and factors that influence and strengthen self-identity
 - understand the basis of friendships
 - examine the benefits of positive social interaction.
- Summative assessment

Unit 2: Feeling Safe

Students explore risk taking behaviours, their rights and responsibilities and decision making strategies. They explore bullying and strategies to reduce it and identify people who can help them make good decisions and stay safe.

- Students:
 - determine the difference between feeling safe and unsafe
 - establish personal safety guidelines in relation to private parts of the body
 - develop the concept of children’s rights
 - examine how rules and laws contribute to safety
 - develop an awareness of the environment by recognising safety clues
 - understand how emotional responses vary in depth and strength in different situations
 - investigate strategies to reduce bullying and promote positive interaction
 - investigate the effects of risk-taking behaviour
 - develop strategies to reduce and manage situations involving risk.

This unit incorporates concepts from the Daniel Morcombe Child Safety Curriculum.

Unit 3: Healthy futures

Students explore the concept of sustainable practice and the ways that they can contribute to the sustainability of the environment in their home, classroom, and school.

- Students:
 - explore sustainability practices that demonstrate respect for the environment
 - make connections between sustainability and personal health
 - investigate sustainable practices in the classroom
 - explore the similarities between community, classroom and school sustainable practices
 - discuss how being outdoors supports the different dimensions of health
 - participate in a range of outdoor activities with other students.

Unit 4: I am healthy and active

Students investigate the concepts of physical activity and sedentary behaviours while exploring the recommendations of physical activity for 5 to 12 year olds. They examine the benefits of physical activity and investigate ways to increase physical activity in their lives.

- Students:
 - examine different types of physical activity and the benefits to health and wellbeing
 - explore strategies to stay healthy and active
 - examine the concept of sedentary behaviour and how to reduce inactivity
 - investigate strategies to increase physical activity levels and improve health and wellbeing
 - examine how personal identities can be strengthened in challenging situations
 - participate in games and physical activities to experience health and wellbeing benefits.